

6-(1-HYDROXYALKYL)PENAM SULFONE DERIVATIVES AS INHIBITORS OF CLASS A AND CLASS C β-LACTAMASES II

Panayota Bitha, Zhong Li, Gerardo D. Francisco, Youjun Yang, Peter J. Petersen, Eileen Lenoy, and Yang-I Lin*

Chemical Sciences and Infectious Dieseases, Wyeth-Ayerst Research, Pearl River, NY 10965, U.S.A.

Received 30 December 1998; accepted 22 February 1999

Abstract: Two stereoselective processes for the synthesis of novel 3,6-disubstituted penam sulfone derivatives were developed. One 6β -(1-hydroxyethyl) and four 6β -hydroxymethyl penam sulfone derivatives were synthesized. All four 6β -(hydroxymethyl)penam sulfone derivatives demonstrated good IC₅₀ against both TEM-1 and AmpC β-lactamases. Of these, 6β -hydroxymethyl penam sulfone derivative 25 was the most active inhibitor which was able to restore the activity of piperacillin in vitro and in vivo against both TEM-1 and AmpC β-lactamases producing organisms. © 1999 Elsevier Science Ltd. All rights reserved.

Introduction

Penicillins and cephalosporins are the most frequently and widely used β -lactam antibiotics in the clinic. However, the development of bacterial resistance to these β -lactam antibiotics has had a damaging effect on maintaining the effective treatment of bacterial infections.¹ The most significant known mechanism related to the development of bacterial resistance to the β -lactam antibiotic is the production of class A and class C serine β -lactamases. These β -lactamases degrade the β -lactam antibiotics, resulting in a loss of antibacterial activity. class A β -lactamases have molecular weights of about 29 kDa and preferentially hydrolyze penicillins whereas class C β -lactamases have larger molecular weights of about 39 kDa and have a substrate profile favoring cephalosporin hydrolysis.² Bacterial resistance to these antibiotics could be greatly reduced by administering the β -lactam antibiotic in combination with a compound which inhibits these enzymes.

inhibitor with the desired activity against both class A and class C β -lactamases. Therefore, we decided to modify both positions simultaneously.

In the preceding publication, 10 we reported that the 6 β -(1-hydroxyethyl) group improved the β -lactamase inhibitory activity of sulbactam against class C β -lactamases whereas the 6 β -hydroxymethyl group increased the activity of sulbactam against both class A and class C β -lactamases. Therefore, we decided to introduce 6 β -(1-hydroxyethyl) or 6 β -hydroxymethyl group onto the 6-position of tazobactam in order to enhance the activity against class C β -lactamases, in particular. Here we report the synthesis and biological activity of a series of five 3,6-disubstituted penam sulfone derivatives.

Chemistry

Two stereoselective processes (Schemes 1, 2, and 3) for the synthesis of five novel 3,6-disubstituted penam sulfone derivatives¹¹ were developed.

Reaction of dibromosulfoxide 1^{12} with 2-trimethylsilyl-2H-1,2,3-triazole (2)¹³ in acetonitrile gave dibromotriazolylpenam 3 which was oxidized with KMnO₄ to give dibromotriazolylpenam sulfone 4. Treatment of 4 with *t*-BuMgCl in THF, followed by reaction with acetaldehyde, provided a mixture of products 5. Debromination of 5 with Bu₃SnH produced a pure product 6 in high yield. ¹⁴ The stereochemical assignment about the 6-position of 6 was confirmed by the ¹H NMR coupling constant $J_{H5-H6} = 4.6$ Hz which is consistent with the cis configuration betweem H₅ and H₆. ¹⁰ Deprotection of the benzhydryl group⁸ of 6 with *m*-cresol provided 6β-(1-hydroxyethyl)tazobactam (7) (Scheme 1). Similarly, 6β-hydroxymethyltazobactam (10) was stereoselectively prepared from the dibromotriazolylsulfone 4 (Scheme 2). 6β-Hydroxymethyl penam sulfones 25 and 26 were synthesized in 12 steps ¹⁵ from dibromosulfide 11^{16} which was prepared in 2 steps from 6-aminopenicillanic acid (Scheme 3). The intermediates, 21 and 22, were separated by silica gel flash column chromatograhpy. 6β-Hydroxymethyl penam sulfone 29 was synthesized from 20 in 4 steps (Scheme 4). ¹⁵

BH: Benzhydryl

Scheme 2: (a) t-BuMgCl/THF; (b) CH₂O/THF, 30%; (c) Bu₃SnH, 85%; (d) *m*-cresol, 50 °C /NaHCO₃, 80%

BH: Benzhydryl; BT: 2-Benzothiazolyl

Scheme 3: (a) t-BuMgCl/THF; (b) CH₂O/THF, 30-40%; (c) Bu₃SnH, 81-88%; (d) TBS-Tf, 86-90%; (e) HCO₂H/H₂O₂, 75-84%; (f) HSBT/toluene, -100%; (g) ClCH₂CO₂H/AcOAg/CH₂Cl₂, 18-22%; (h) KMnO₄/AcOH, 79-88%; (i) thiourea/py/DMF, 97%; (j) PCC/silica gel, 64%; (k) Ph₃P=CHCN, 73%; (l) NH₄F.HF/DMF/NMP, 65%; (m) m-cresol, 50 °C /NaHCO₃, 80%

Scheme 4: (a) MeONH₂.HC/py/CH₂Cl₂, 89%; (b) NH₄F.HF/DMF/NMP, 65%; (c) m-cresol, 50 °C /NaHCO₃, 80%

Results and Discussion

BH: Benzhydry

As is evident from Table 1, the 6β-(1-hydroxyethyl) group of 7 improved the IC₅₀ of tazobactam by 397fold against the AmpC (class C) β-lactamase but it decreased the IC₅₀ by 42-fold against the TEM-1 (class A) βlactamase. As expected, the 6β-hydroxymethyl group of 10 substantially improved the IC₅₀ of tazobactam against both TEM-1 (ten fold) and AmpC (132-fold) β-lactamases. 6β-Hydroxymethyltazobactam (10) was also able to restore the activity of piperacillin in vitro and in vivo against the TEM-1 producing organism. At a 1:1 ratio of piperacillin to 10, the MIC and ED₅₀ values of piperacillin were reduced from >64 µg/mL and 256-512 mg/kg to 2 μg/mL and 3.6 mg/kg, respectively, against the TEM-1 producing organism. Disappointingly, 6βhydroxymethyltazobactam (10) was almost as ineffective as tazobactam in reducing the MIC and ED₅₀ values of piperacillin against the AmpC expressing bacterial isolate. Since Ro 48-1220 was reported to have better activity than tazobactam against AmpC β-lactamases, ⁸ 6β-hydroxymethyl derivative (25) of Ro 48-1220 and its related derivatives (26 and 29) were prepared. These three new 6β-(hydroxymethyl)penam sulfone derivatives, 25, 26, and 29, all demonstrated good IC₅₀ against both TEM-1 and AmpC β-lactamases. They were all able to restore the in vitro activity of piperacillin at a ratio of 1:1 of piperacillin to the inhibitor (25, 26, or 29) against TEM-1 and AmpC β-lactamases producing organisms. The activity of the Z-isomer 25 is little better than that of the E-isomer 26 and this observation is consistent with that of the 6-unsubstituted derivatives, Ro 48-1220 and its E-isomer. 8 Of these three derivatives, 6β-(hydroxymethyl)penam sulfone derivative 25 was the most active inhibitor which was selected for further in vivo evaluation. At a 2:1 ratio of piperacillin to 25, the ED50 values for piperacillin were reduced from 256-512 mg/kg and 128-256 mg/kg to 4-8 mg/kg and 8-32 mg/kg against TEM-1 and AmpC expressing bacterial isolates, respectively.

Table 1: Biological Activity of 3,6-Disubstituted Penam Sulfone Derivatives 29: $R_1 = 6\beta$ -HOCH₂, $R_2 = -N$ -OMe Ro 48-1220: R1 = H, R2 = ---- CN (Z) ED₅₀ (mg/kg; 2:1^d; mice) IC50 (nM) MIC (μg/mL; 1:1^d) Compound TEM-1 S. marcescens S. marcescensb **AmpC** E. coliª E. coliª 2.500 >64° 7 120 16e 10 360 2^{c} 16e 6 3.6 125 25 19 270 8 4-8 16-32 26 74 280 16 4 29 64 280 16 **4**^c Ro 48-1220 42 1,133 4^e 15 82 Sulbactam 1,400 65,900 **Tazobactam** 47,700 2 32 7.7 60 144 Piperacillin >64 32 256-512 128-256 ^aGC6265, TEM-1 (class A); ^bGC4132, AmpC (class C); ^cGC2847, TEM-1 (class A); ^dpiperacillin:inhibitor ratio; ^eGC2894; AmpC (class C).

In conclusion, a series of one 6β -(1-hydroxyethyl) and four 6β -hydroxymethyl penam sulfone derivatives have been synthesized and evaluated for their potency as inhibitors of β -lactamases and as partners for piperacillin. The four 6β -hydroxymethyl penam sulfone derivatives all demonstrated good IC₅₀ against both TEM-1 and AmpC β -lactamases. Of these, 6β -hydroxymethyl penam sulfone derivative 25 was the most active inhibitor which was able to restore the activity of piperacillin in vitro and in vivo against both TEM-1 and AmpC β -lactamases producing organisms.

Acknowledgments: The authors would like to thank Drs. S. A. Lang and B. Rasmussen for valuable discussion, Drs. R. Nilakantan and F. Hollinger for the molecular modelling studies, ¹⁷ Drs. J. Qi and A. Asselin of the Resynthesis Group for the supply of the starting materials (1 and 11) and Drs. D. Shlaes and T. Mansour for the support of this work.

References

- 1. (a) Coleman, K. Expert Opin. Invest. Drugs 1995, 4, 693. (b) Sutherland, R. Infection 1995, 23(4), 191.
- (a) Ambler, R. P. Philosophical Transactions of the Royal Society, London 1980, 289, 321.
 (b) Bush, K.; Jacoby, G. A.; Medeiros, A. A. Antimicrob. Agents Chemother. 1995, 39, 1211.
- (a) Nordmann, P.; Naas, T. Current Opin. In Infectious Diseases 1997, 10, 435.
 (b) Piddock, L. J. V.; Walter, R. N.; Jin, Y.-F.; Turner, H. L.; Gascoyne-Binzi, D. M.; Hawkey, P. M. J. Antimicrobial Chemotherapy 1997, 39, 177.
 (c) Moosdeen, F. Clinical Infectious Diseases 1997, 24, 487.
 (d) Sanders, W. E., Jr.; Sanders, C. C. Clin. Microbiol. Rev. 1997, 10, 220.
- 4. Chen, Y. L.; Chang, C.-W.; Hedberg, K.; Guarino, K.; Welch, W. M.; Kiessling, L.; Retsema, J. A.; Haskell, S. L.; Anderson, M.; Manousos, M.; Barrett, J. F. J. Antibiotics 1987, 40, 803.
- 5. Eby, P.; Cummings, M. D.; Philips, O. A.; Czajkowski, D. P.; Singh, M. P.; Spevak, P.; Micetich, R. G.; Maiti, S. N. Heterocycles 1996, 42, 653.
- Micetich, G.; Maiti, S. N.; Spevak, P.; Hall, T. W.; Yamabe, S.; Ishida, N.; Tanaka, M.; Yamazaki, T.; Nakai, A.; Ogawa, K. J. Med. Chem. 1987, 30, 1469.
- 7. Reddy, N. A. V.; Setti, E. L.; Philips, O. A.; Czajkowski, D. P.; Atwal, H.; Atchison, K.; Micetich, R. G.; Matti, S. N.; Kunugita, C.; Hyodo, A. J. Antibiotics 1997, 50, 276.
- 8. Richter, H. G. F.; Angehrn, P.; Hubschwerlen, C.; Kania, M.; Page, M. G. P.; Specklin, J.-L.; Winkler, F. K. J. Med. Chem. 1996, 39, 3712.
- (a) Ziegler, C. B., Jr.; Yang, Y.; Fabio, P.; Steinberg, D. A.; Weiss, W.; Wildey, M. J.; Bush, K. 34th
 Interscience Conference on Antimicrobial Agents and Chemotherapy Orlando, Florida-October 4-7 1994.
 (b) Bitha, Y.; Lin, Y.-I unpublished work.
- 10. Bitha P.; Li Z.; Francisco G. D.; Rasmussen B.A.; Yang Y.-I Bioorg. Med. Chem. Lett. 1999, 9, 991.
- 11. ¹H NMR data in D₂O of these five new derivatives are summarized as follows: 7, δ : 8.11 (1H, s), 7.84 (1H, s), 5.36 (1H, d; J = 15.4 Hz), 5.17 (1H, d; J = 15.4 Hz), 4.80 (1H, d; J = 4.8 Hz), 4.74 (1H, m), 4.57 (1H, s), 4.03 (1H, dd; J = 4.8 Hz), 1.42 (3H, s), 1.34 (3H, s); 10, δ : 8.12 (1H, s), 7.85 (1H, s), 5.37 (1H, d; J = 15.4 Hz), 5.16 (1H, d; J = 15.4 Hz), 5.08 (1H, d; J = 4.6 Hz), 4.57 (1H, s), 4.38-4.31 (1H, m), 4.28-3.98 (2H, m), 1.41 (3H, s); 25, δ : 6.68 (1H, d; J = 12.4 Hz), 6.16 (1H, d; J = 12.4 Hz), 5.25 (1H, d; J = 4.7 Hz), 4.36 (1H, m), 4.22 1H, dd; J = 8.16 Hz), 4.08 (1H, dd; J = 8.16 Hz), 1.94 (3H, s); 26, δ : 7.08 (1H, d; J = 16.5 Hz), 6.07 (1H, d; J = 16.5 Hz), 5.2 (1H, s), 4.36 (1H, m), 4.21 (1H, dd; J = 8.10 Hz), 4.07 (1H, dd; J = 8.10 Hz), 1.64 (3H, s); 29, δ : 7.68 (1H, s), 5.18 (1H, d; J = 4.5 Hz), 4.88 (1H, s), 4.35 (1H, m), 4.2 (1H, t), 4.08 (1H, dd), 3.97 (3H, s), 1.66 (3H, s).
- 12. Maiti, S. N.; Spevak, P.; Wong, R.; Reddy, N. A. V.; Micetich, R. G.; Ogawa, K. Heterocycles 1991, 32, 1505.
- 13. Abbotto, A; Bradamante, S; Pagani, G. A. J. Org. Chem. 1996, 61, 1761
- 14. Ziegler, C. B., Jr.; Fields, T. L. Tetrahedron 1993, 49, 3919.
- 15. Czajkowski, D. P.; Reddy, A. V. N.; Setti, E. L.; Phillips, O. A.; Micetich, R. G.; Kunugita, C.; Maiti, S. N. Bioorg. Med. Chem. Lett. 1997, 7, 11.
- 16. Sacripante, G.; Just, G. J. Org. Chem. 1987, 52, 3659.
- 17. Molecular modelling studies using MacroModel v6.0 showed that good binding ligands fit well in the enzyme active site and remained there during the molecular dynamics simulation. Details of the molecular modelling studies will be published elsewhere.